Convergence of finite volume schemes for triangular systems of conservation laws
نویسندگان
چکیده
We consider non-strictly hyperbolic systems of conservation laws in triangular form, which turn up in applications like three-phase flows in porous media flow. We device finite volume schemes of Godunov type for these systems that exploit the triangular structure. We prove that the finite volume schemes converge to weak solutions as the discretization parameters tend to zero. Some numerical examples are presented, one of which is related to flows in porous media.
منابع مشابه
ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws
ADER schemes are recent finite volume methods for hyperbolic conservation laws, which can be viewed as generalizations of the classical first order Godunov method to arbitrary high orders. In the ADER approach, high order polynomial reconstruction from cell averages is combined with high order flux evaluation, where the latter is done by solving generalized Riemann problems across cell interfac...
متن کاملNumerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...
متن کاملA New Convergence Proof for Finite Volume Schemes Using the Kinetic Formulation of Conservation Laws
We give a new convergence proof for finite volume schemes approximating scalar conservation laws. The main ingredients of the proof are the kinetic formulation of scalar conservation laws, a discrete entropy inequality, and the velocity averaging technique.
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملMaximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes
Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 111 شماره
صفحات -
تاریخ انتشار 2009